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ABSTRACT. We have evolved an effective inter ionic interaction potential to investigate the second order, 
third order elastic constants and Debye temperature for zinc blende (B3) structure in II-VI (ZnSe and ZnTe) 
semiconducting compound. The elastic properties were estimated by developing an interionic potential which 
includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction 
upto second-neighbor ions within the Hafemeister and Flygare approach. We have also obtained 
thermodynamical parameters, such as, force constant, Gruneisen parameter, reststrahlen frequency and the 
compressibility. The variations of third order elastic constants with pressure follow a systematic trend 
identical to those exhibited by others compounds of B3 type structure family and the Born relative stability 
criteria is valid in ZnX (X = Se and Te) compounds. 
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I. INTRODUCTION  

As semiconducting binary materials, ZnX (X= Se and 

Te) have grabbed the more attention in the last few 

decades. These compounds are used in several 

established commercial electronic and opto electronic 

devices, operating in blue to ultraviolet spectral regions 

such that visual displays, high-density optical 
memories, transparent conductors, solid-state laser 

devices, photo detectors, and solar cells. They 

crystallize in zinc blende (B3) structures [1-4].  at 

ambient pressure. The high pressure study of II–VI 

semiconductors has exhibited polymorphic structural 

transformation in these compounds. On one hand ZnSe 

is suited for the fabrication of blue light-emitting diodes 

in quantum well device. [5-7]. , On the other hand, 

ZnTe is used in many technological applications,  for 

example photovoltaic devices, thin-film transistors, 

THz emitters, detectors and imaging systems [8]. . 
The growth of the detect technology such as 

X-ray diffraction, thermoelectric, and Raman Spectra 

Measurement in high-pressure device has allowed us to 

determine the phase transition more exactly. However 

the two compounds are in the same family and have the 

same natural phase but their high pressure-induced 

phase transitions are not the same always. For example, 

ZnSe transform to rock-salt (B1) structure from natural 

phase (B3), whereas ZnTe shows a peculiar behavior 

under high pressure, transforming to the B1 phase. Up 

to now, several experimental and theoretical results 

have been carried out on their phase transitions [9-14]. . 

By the phenomenological method, we have acquired the 

B3-B1 transition pressure at 15 GPa for ZnSe and 10 

GPa for ZnTe earlier [15]. . 

The anharmonic properties of crystalline solids 

give valuable information about inter atomic force 
along with thermal properties. Out of them the higher 

order elastic constants and the pressure derivatives of 

second order elastic are constants. As we are quite 

familiar with that cohesion in solids is vital than the 

most of the cohesion in these potentials is contributed 

by long range coulomb interaction, short range overlap 

repulsion explained by the Pauli exclusion principal 

[16,17]. . Born and Mayer have used overlap repulsion 

with a lattice sum to describe successfully the cohesion 

in most of the ionic solids [17]. . Earlier work of Fumi 

and Tosi [16]. , who properly included Van der Waals 
interaction along with dipole-dipole (d-d) and dipole-

quadrupole (d-q) interactions to bring out the cohesion 

in several ionic solids. The Vander Waals coefficients 

are deduced from the SKV method [18]. . Here is 

becomes important to tell that the work of Singh [19].  

who introduce the effects of three body interactions and 

follow Hafemeister and Flygare [20].  type overlap 

repulsion, extended up to second neighbour ions 

besides short-range interactions to discuss mechanical 

properties of several solids and alloys. 
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Hence the above approach successfully predicts thermodynamic properties in ZnX (X = Se and Te) compound. We 

have noticed that short range dipole-dipole (d-d) and dipole-quadrupole (d-q) interactions are the keystones for all of 
these approaches to to explain the cohesion of ionic solids. Present results are discussed in Section 2 and conclusion 

is in Section 3. 

II. THEORY AND METHOD OF COMPUTATION 

The understanding of thermo dynamical properties for ZnX (X = Se and Te) compound requires the formulation of 

an effective inter ionic potential. The effective inter ionic potential between pair of ions (i and jth) is expressed as 

.exp)( 86
2

∑ ∑++∑ 








 −+
∑ += −−

ij ij
ijijijij

ij

ijji
ij

ij
r

eZ
rdrc

rrr
brU

ij

m

ρ
β  (1) 

Where, long-range Coulomb is represented by first term, second term correspond to Hafemeister and Flygare form 

of short-range repulsive energies [20].  and van der Waals multipole are represented by third and fourth terms, 

respectively. The Pauling coefficients βij are defined as: βij = [1+(zi/ni)/(zj/nj)].  with zi (zj) and ni (nj) as the valencey 
and number of outermost electrons in the anions (cations), respectively. The symbols: cij and dij are representing the 

dipole-dipole (d-d) and dipole-quadrupole (d-q) vander Waals coefficients. Zme is the modified ionic charge due to 

Coulomb screening effects. and rij are the equilibrium distance between ith and jth ions. b (hardness) and ρ (range) are 

short-range parameters. Thus, the effective inter ionic potential contains only three free parameters (Zm, b and ρ) 
which can be determined from the crystal properties [21]. . 

A. Second and third order elastic constants 
The study of the second-order elastic constants (SOEC) (C11, C12 and C44) , their pressure derivatives and third order 

elastic constants at 0 K is quite important for understanding the nature of the inter atomic forces in them. Since these 

elastic constants are functions of the first- and second-order derivatives of the short-range potentials, their 

calculations will provide a further check on the accuracy of short-range forces in these materials. We use the 

following second-order elastic constants (SOEC) for B3 phase: 
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The expression for pressure derivatives of second order elastic constants follows 
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Furthermore, the expression for anharmonic third-order elastic constants, using the crystal potential and the method 
of homogeneous deformation leads to the following 
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Various symbols appear in the above expressions are associated with the crystal energy and have the following form 
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Here, b and ρ being the short-range parameters.  

III. RESULT AND DISCUSSION 

The effective interionic potential described in section (2) for the zinc blende (B3)  phase contain three free 

parameters, which are , modified ionic charge, range and hardness parameters (Zm, ρ and b). To estimate the free 
parameters, we first deduce the vdW coefficients from the Slater-Kirkwood variational method [18].  and are listed 
in table 1. We consider that the ZnX compounds to be partially ionic. For computation purposes we have deduced the 

values free papameters modified ionic charge (Zm), range (ρ) and hardness (b) from the knowledge of equilibrium 
distance and the bulk modulus following the equlibrium conditions [21]. . The input data along with their relevant 
references and the model parameters for ZnX (X = Se and Te) compounds are given in table 2. 

Table 1: The values of van der Waals coefficients cij (i, j = 1,2) [in units of 10-60 erg cm6]. , dij (i, j = 
1,2) [in units of 10-76 erg cm8].  and overall van der Waals coefficients (C, D) for ZnX compounds. 

Solids vdW coefficients 

 c11 c12 c22 C d11 d12 d22 D 

ZnSe 38.04 112.82 533.96 709.24 12.07 115.26 702.23 586.33 

ZnTe 38.04 149.11 1087.3 1078.1 12.07 197.0 1812.4 1100.3 

 
Table 2: Crystal data and model parameters for ZnX (X = Se and Te) compounds. 

 
Material Parameters Model Parameters 

ri(Å) rj (Å) a (Å) BT (GPa) Zm
2 

ρ (10-1 Å) b(1012 erg) 

ZnSe 0.74 1.73 5.667 [22].  62.67 [22].  3.24 3.9 2.148 

ZnTe 0.74 1.83 6.089 [23].  52.80 [23].  3.35 4.1 2.55 

 
While studying the high-pressure elastic behaviour of these compounds, we have computed the second-order elastic 
constants (SOEC) and their variations with pressure as shown in Fig. 1 (a, b). We have found that the value of C44 
increase linearly with  the increase of pressure from zero and does not tend to zero at the upto the pressure we 
studied, which is in accordance with the first order character of the transition and the values of C11 and C12 is also 
increase linearly with pressure. The variations of elastic constants with pressure follow a systematic trend identical 
to that observed in others compounds [21]. . 
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(a) (b) 

Fig. 1 (a, b): Variation of second order elastic constant with pressure. 

Further the stability of a cubic crystal is expressed in terms of elastic constants as follows [24]. : 
 BT= (C11+ 2C12)/3 >0, (25) 
 C44>0, (26) 
and                                                   Cs= (C11− C12)/2 >0.                                                    (27) 
Here, Cij are the conventional elastic constants. Estimated values of bulk modulus BT, shear moduli C44 and 
tetragonal moduli Cs are tabulated in table 3, well satisfy the above elastic stability criteria for ZnX (X = Se and Te) 
compounds. We analyze the anharmonic properties of ZnX (X = Se and Te) compounds by computing the third order 
elastic constants (TOECs) and the pressure derivatives of SOECs at zero pressure.The values of pressure derivatives 
of second order elastic constants as dσ/dP,dBT/dP and dC44/dP for both two and three body interaction are listed in 
Table 3. 

Table 3. The values of pressure derivatives of SOECs (dBT/dP, dC44/dP and dCS/dP) and second  
order elastic constants (C11, C12, C44) (in units of 1011 N m-2). 

Quantities ZnSe ZnTe 

dBT/dP 4.31 4.37 

dCS/dP -0.25 -0.29 
dC44/dP 7.24 4.68 

C11 2.27 1.83 

C12 1.22 1.03 

C44 
BT 

Cs 

1.04 
1.56 
0.52 

1.01 
1.29 
0.39 

 
In continuation, the variations of third order elastic constants with pressure are shown in Fig. 2 (a, b). It can be seen 
that the variation of TOEC with pressure points to the fact that the values of C111, C112, C144, C166and C456 are 
negative, but the value of C123 is positive as obtained from the effective interionic potential at zero pressure.  

Table 4. The values of third order elastic constants (C111, C112, C123, C144, C166and C456) (in units of 
1011 N m-2). 

Quantities ZnSe ZnTe 
C111 -3.70 -3.19 
C112 -4.08 -3.48 
C123 1.80 -4.71 
C144 -3.15 -1.34 
C166 -7.68 -4.97 
C456 -3.63 -7.56 
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Furthermore, C166 and C144 increase, on the other hand, remaining third order elastic constants decreases with 
pressure and follows a systematic trend. Thus we can say that in ZnX, the developed interionic potential consistently 
explains the elastic behavior under high pressure. 

 

  

Fig. 2. Variation of third order elastic constant with pressure. 

Apart from elastic constants, we have investigated various important physical properties like force constant 

(f), Gruneisen parameter (γ), Reststrahlen frequency (ν0) and compressibility (β).The relevant expressions used in 
our calculations [27].  are given below. The molecular force in the absence of the Lorentz effective field is given by 

,)(
2

)(
3

1

0
0

2

2

rr

SRSR rU
dr

d

r
rU

dr

d
f

=









+=  (28) 

which consists of the short range overlap repulsion and the vdW interaction potentials between the unlike ions. The 
force constant in turn gives the Reststrahlen frequency as 
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with µ being the reduced mass.  
In order to describe the anharmonic properties, we have calculated γ from the relation 
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Finally, the compressibility is 
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 The above thermodynamical parameters are listed in Table 5. We have used the effective interionic 
potential to successfully predicted the elastic and anharmonic properties of the test semiconducting compound under 
consideration. The dedused values of γ are consistent with the reported ones and this can be attributed to the proper 
incorporation of various interactions in the effective interionic potential.The present effective interionic potential 
consistently explain the high pressure, anharmonic behavior and associated thermodynamical variables of ZnX 
semiconducting compounds. 

We have also estimated Debye temperature (θD) from the present approach. We define [27]. . 
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Where M is the acoustic mass of the compound and h and kB are the Planck and Boltzmann constant respectively. 
Fig. 3.  show the variation of Debye temperature  (θD) with pressure  in B3 phase for ZnX (X = Se and Te) 
compounds. It is noticed from the figure that θD increases with increasing in pressure in B3 phase for ZnX (X = Se 
and Te) compounds and is attributed to softening of the lattice with pressure. The calculated values of the Debye 
temperature at zero pressure for ZnSe and ZnTe are 232.59 K and 224.11K respectively. 

Table 5: Thermodynamical properties of ZnX (X = Se and Te) with zinc blende structure. 

Properties Formula ZnSe ZnTe 
Force constant (f) (105dyne/cm) 28 3.70(4.59a) 3.26(3.13c) 
Reststrahlen frequency (ν0) (101 29 3.17(6.42b) 2.98(5.20b) 
Gruneisen parameter (γ) 30 1.44(1.55c) 1.48(1.58d) 
Compressibility (β) (10-11 Pa-1) 32 1.05 1.25 

aRef.[25]. , bRef.[26]. , cRef.[27]. , dRef.[28].  

  
(a) (b) 

Fig. 3. Variation of Debye temperature (θD) as a function of pressure for ZnX (X = Se and Te) in B3 
phase. 

We do not claim the process to be rigorous, but a consistent agreement following effective interionic potential is 
obtained on Debye temperature as those revealed from experiments. Usually, the Debye temperature is also a 
function of temperature and varies from technique to technique and depends on the sample quality with a standard 
deviation of about 15 K. 

IV. CONCLUSION 

In this study, we have investigated the second-order elastic constants (SOEC), their pressure derivatives, third order 
elastic constants (TOECs), and Debye temperature (θD) of ZnX (X = Se and Te) compounds using developed model 
potential. We have checked the validity of Born criterion by computing second-order elastic constants that supports 
high pressure structural stability of ZnX (X = Se and Te) compounds. All the SOECs increase with increase in 
pressure and C44 does not tend to zero at the phase transition pressures. We should emphasize that our conclusions 
have been established only within the framework of interionic potential with overlap repulsion up to second nearest 
neighbor interactions. We also find that the variations of third order elastic constants with pressure  points to the fact 
that the values of C111, C112, C144, C166and C456 are negative, but the value of C123 is positive as obtained from the 
effective interionic potential at zero pressure. The present study exhibits a quantitative description of the thermo-
dynamical parameters of the selective semiconducting compound ZnX (X = Se and Te) and tests the suitability of the 
effective inter ionic potential. 

 



 

 

 

                                                                 Jain, Nagarch
 
and Shah                                                                      83 

REFERENCES 

[1]. P. Yang, M. K. Lu, G. J. Zhou, D. R. Yong and D. Xu Inorg, Chem. Commun., 4, 734 (2001). 
[2]. H. Fan, A. S. Barnard and M. Zacharias,  Appl Phys Lett, 90, 143116 (2007). 
[3]. O. Madelung, M. Schulz, H. Weiss, ed. Berlin: Springer-Verlag, 17b (1982). 
[4].  A. Segura, et al., Appl. Phys. Lett., 83, 278 (2003). 
[5].  H. Y. Wang, et al., Condens. Matter Phys., 15, 13705 (2012). 
[6]. J. Sorgel and U. Scherz, Eur. Phys. J. B, 5, 45 (1998). 
[7]. R. A. Casali and N. E. Christensen , Solid State Commun., 108, 793 (1998). 
[8]. C. Soykan, S. Ozdemir Kart and T. Cagin, Arch. Mater. Sci. Eng., 46, 115 (2010). 

[9]. R. J. Nelmes and M. I. McManhon, , Semicond Semimetals, 54, 145 (1998).   
[10]. S. V. Ovsyannikov and V. V. Shchennikov, Solid State Commun., 132, 333 (2004). 
[11]. V. I. Smelyansky and J.S. Tse, Phys. Rev. B, 52, 4658(1995). 
[12]. D. Varshney, N. Kaurav and P. Sharma, Phas. Trans., 77, 1075 (2004). 
[13]. A. San-Mignel, A. Polian, J. P. Itie, A. Marbeauf and R. Triboulet, High Pres. Res., 10, 412 (1992). 
[14]. R. J. Nelmes, M. I. McMahon, N. G. Wright and D. R. Allan, Phys. Rev. Lett., 73, 1805 (1994). 
[15]. A. Jain, R. K. Nagarch and S. Shah, Holkar Research Spectrum, 2, 45 (2016). 
[16]. M. P. Tosi, Solid State Phys. 16, 1 (1964), M. P. Tosi & Fumi F G, J phys chem solids, 23, 359 (1962), M. L. Huggins & J. 

E. Mayer, J Chem Solids, 3, 637(1935). 
[17].  J. E. Mayer, J Chem Solids, 3, 270 (1933). 
[18]. J. C. Slater and J. G. Kirkwood, Phys. Rev., 37, 682 (1931). 
[19]. R. K. Singh, Phys. Rep., 85, 259 (1982). 
[20]. D. W. Hafemeister and W. H. Flygare, J. Chem. Phys., 43, 795 (1965).  
[21]. Netram Kaurav, Phys. Scr., 88, 015604 (2013). 
[22]. H. Karze, et al., Phys. Rev. B, 53, 11425 (1996). 
[23]. O. Madelung, H. Weiss and M. Schultz, Börnstein new series group III: physics of II–VI and I–VII  compounds, 
semimagnetic semiconductors. Berlin: Springer, 17b (1982). 

[24]. M. Born and K. Huang, Dynamical Theory of Crystal Lattice (Oxford, Clarendon,1956). 
[25].  W. C. Chou, C. S. Ro, D. Y. Hong and C S Yang et al. J phys.,36, 120 (1998). 
[26].  American Institute of Physics Handbook (McGraw-Hill, New York) (1963). 
[27].  D. Varshney, R King, P. Sharma, N. Kaurav and R K Sing, Indian Journal of Physics, 43, 939 (2005). 
[28]. C. Abraham ,Ph D Thesis Univ Stuttgart, (1992). 


